Training R-CNNs of various velocities
Slow, fast, and faster

Ross Girshick
Facebook AI Research (FAIR)
Section overview

• Kaiming just covered inference

• This section covers
 • A brief review of the slow R-CNN and SPP-net training pipelines
 • Training Fast R-CNN detectors
 • Training Region Proposal Networks (RPNs) and Faster R-CNN detectors
Review of the slow R-CNN training pipeline

Steps for training a slow R-CNN detector

1. [offline] $M \leftarrow$ Pre-train a ConvNet for ImageNet classification
2. $M' \leftarrow$ Fine-tune M for object detection (softmax classifier + log loss)
3. $F \leftarrow$ Cache feature vectors to disk using M'
4. Train post hoc linear SVMs on F (hinge loss)
5. Train post hoc linear bounding-box regressors on F (squared loss)

Review of the slow R-CNN training pipeline

“Post hoc” means the parameters are learned after the ConvNet is fixed

1. [offline] $M \leftarrow$ Pre-train a ConvNet for ImageNet classification
2. $M' \leftarrow$ Fine-tune M for object detection (softmax classifier + log loss)
3. $F \leftarrow$ Cache feature vectors to disk using M'
4. Train post hoc linear SVMs on F (hinge loss)
5. Train post hoc linear bounding-box regressors on F (squared loss)
Review of the slow R-CNN training pipeline

Ignoring pre-training, there are three separate training stages

1. [offline] $M \leftarrow$ Pre-train a ConvNet for ImageNet classification
2. $M' \leftarrow$ Fine-tune M for object detection (softmax classifier + log loss)
3. $F \leftarrow$ Cache feature vectors to disk using M'
4. Train post hoc linear SVMs on F (hinge loss)
5. Train post hoc linear bounding-box regressors on F (squared loss)

Review of the SPP-net training pipeline

The SPP-net training pipeline is slightly different

1. [offline] $M \leftarrow$ Pre-train a ConvNet for ImageNet classification
2. $F \leftarrow$ Cache SPP features to disk using M
3. $M' \leftarrow M.conv + \text{Fine-tune 3-layer network fc6-fc7-fc8 on } F$ (log loss)
4. $F' \leftarrow$ Cache features on disk using M'
5. Train post hoc linear SVMs on F' (hinge loss)
6. Train post hoc linear bounding-box regressors on F' (squared loss)

Review of the SPP-net training pipeline

Note that only classifier layers are fine-tuned, the conv layers are fixed

1. [offline] $M \leftarrow$ Pre-train a ConvNet for ImageNet classification
2. $F \leftarrow$ Cache SPP features to disk using M
3. $M' \leftarrow M.conv +$ Fine-tune 3-layer network fc6-fc7-fc8 on F (log loss)
4. $F' \leftarrow$ Cache features on disk using M'
5. Train post hoc linear SVMs on F' (hinge loss)
6. Train post hoc linear bounding-box regressors on F' (squared loss)

Why these training pipelines are slow

Example timing for slow R-CNN / SPP-net on VOC07 (only 5k training images!) using VGG16 and a K40 GPU

- Fine-tuning (backprop, SGD): 18 hours / 16 hours
- Feature extraction: 63 hours / 5.5 hours
 - Forward pass time (SPP-net helps here)
 - Disk I/O is costly (it dominates SPP-net extraction time)
- SVM and bounding-box regressor training: 3 hours / 4 hours
- Total: 84 hours / 25.5 hours
Fast R-CNN objectives

Fix most of what’s wrong with slow R-CNN and SPP-net

• Train the detector in a **single stage, end-to-end**
 • No caching features to disk
 • No post hoc training steps

• Train **all layers** of the network
 • Something that slow R-CNN can do
 • But is lost in SPP-net

• Conjecture: training the conv layers is important for very deep networks
 (it was not important for the smaller AlexNet and ZF)
How to train Fast R-CNN end-to-end?

- Define **one network with two loss branches**
 - Branch 1: softmax classifier
 - Branch 2: linear bounding-box regressors
 - Overall loss is the sum of the two loss branches
- Fine-tune the network jointly with SGD
 - Optimizes features for both tasks
- Back-propagate errors all the way back to the conv layers

Log loss + smooth L1 loss

ConvNet (applied to entire image)

Linear + softmax

Linear

Proposal classifier

Bounding box regressors

FCs

RoI pooling

Trainable

Multi-task loss

External proposal algorithm e.g. selective search

Forward / backward
Benefits of end-to-end training

• Simpler implementation
• Faster training
 • No reading/writing features from/to disk
 • No training post hoc SVMs and bounding-box regressors
• Optimizing a single multi-task objective may work better than optimizing objectives independently
 • Verified empirically (see later slides)

End-to-end training requires overcoming two technical obstacles
Obstacle #1: Differentiable RoI pooling

Region of Interest (RoI) pooling must be (sub-)differentiable to train conv layers
Review: Spatial Pyramid Pooling (SPP) layer

From Kaiming’s slides

Conv feature map

Region of Interest (RoI)

SPP layer

concatenate, fc layers ...

Figure from Kaiming He

Review: Region of Interest (RoI) pooling layer

Just a special case of the SPP layer with one pyramid level

Obstacle #1: Differentiable RoI pooling

RoI pooling / SPP is just like max pooling, except that pooling regions overlap

\[r_0 \]

\[r_1 \]

Obstacle #1: Differentiable RoI pooling

RoI pooling / SPP is just like max pooling, except that pooling regions overlap

Obstacle #1: Differentiable RoI pooling

RoI pooling / SPP is just like max pooling, except that pooling regions overlap

Obstacle #1: Differentiable RoI pooling

RoI pooling / SPP is just like max pooling, except that pooling regions overlap.

$\begin{align*}
 i^*(0,2) &= 23 \\
 i^*(1,0) &= 23
\end{align*}$

Obstacle #1: Differentiable RoI pooling

RoI pooling / SPP is just like max pooling, except that pooling regions overlap.

\[
\frac{\partial L}{\partial x_i} = \sum_{r} \sum_{j} \left[i = i^*(r, j) \right] \frac{\partial L}{\partial y_{rj}}
\]

Partial for \(x_i\) Over regions \(r\), locations \(j\)

\(i^*(0,2) = 23\)
\(i^*(1,0) = 23\)

Partial from next layer

\(\text{max pooling "switch" (i.e. argmax back-pointer)}\)

Obstacle #2: Making SGD steps efficient

Slow R-CNN and SPP-net use region-wise sampling to make mini-batches

• Sample 128 example RoIs uniformly at random
• Examples will come from different images with high probability
Obstacle #2: Making SGD steps efficient

Note the receptive field for one example RoI is often very large

• Worst case: the receptive field is the entire image
Obstacle #2: Making SGD steps efficient

Worst case cost per mini-batch (crude model of computational complexity)

- \(\frac{128 \times 600 \times 1000}{(128 \times 224 \times 224)} = 12x\) computation than slow R-CNN
Obstacle #2: Making SGD steps efficient

Solution: use hierarchical sampling to build mini-batches

- Sample a small number of images (2)
- Sample many examples from each image (64)

Obstacle #2: Making SGD steps efficient

Use the test-time trick from SPP-net during training

• Share computation between overlapping examples from the same image
Obstacle #2: Making SGD steps efficient

Cost per mini-batch compared to slow R-CNN (same crude cost model)

\[\frac{2 \times 600 \times 1000}{(128 \times 224 \times 224)} = 0.19x < \text{computation than slow R-CNN} \]
Obstacle #2: Making SGD steps efficient

Are the examples from just 2 images diverse enough?

• Concern: examples from the sample image may be too correlated
Fast R-CNN outcome

Better training time and testing time with better accuracy than slow R-CNN or SPP-net

- Training time: 84 hours / 25.5 hours / 8.75 hours (Fast R-CNN)
- VOC07 test mAP: 66.0% / 63.1% / 68.1%
- Testing time per image: 47s / 2.3s / 0.32s
 - Plus 0.2 to > 2s per image depending on proposal method
 - With selective search: 49s / 4.3s / 2.32s

Updated numbers from the ICCV paper based on implementation improvements.
Experimental findings

• End-to-end training is important for very deep networks
• Softmax is a fine replacement for SVMs
• Multi-task training is beneficial
• Single-scale testing is a good tradeoff (noted by Kaiming)
• Fast training and testing enables new experiments
 • Comparing proposals
The benefits of end-to-end training

<table>
<thead>
<tr>
<th>layers that are fine-tuned in model \mathbf{L}</th>
<th>SPPnet \mathbf{L}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\geq fc6</td>
<td>\geq conv3_1</td>
</tr>
<tr>
<td>VOC07 mAP</td>
<td>61.4</td>
</tr>
<tr>
<td>test rate (s/im)</td>
<td>0.32</td>
</tr>
</tbody>
</table>

- Model $\mathbf{L} = \text{VGG16}$
- Training layers \geq conv3_1 yields 1.4x faster SGD steps, small mAP loss
Softmax is a good SVM replacement

<table>
<thead>
<tr>
<th>method</th>
<th>classifier</th>
<th>S</th>
<th>M</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-CNN [9, 10]</td>
<td>SVM</td>
<td>58.5</td>
<td>60.2</td>
<td>66.0</td>
</tr>
<tr>
<td>FRCN [ours]</td>
<td>SVM</td>
<td>56.3</td>
<td>58.7</td>
<td>66.8</td>
</tr>
<tr>
<td>FRCN [ours]</td>
<td>softmax</td>
<td>57.1</td>
<td>59.2</td>
<td>66.9</td>
</tr>
</tbody>
</table>

- VOC07 test mAP
- $L = \text{VGG16}$, $M = \text{VGG}_\text{CNN}_M_1024$, $S = \text{Caffe/AlexNet}$
Multi-task training is beneficial

<table>
<thead>
<tr>
<th>multi-task training?</th>
<th>stage-wise training?</th>
<th>test-time bbox reg?</th>
<th>VOC07 mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>62.6 63.4 64.0 66.9</td>
</tr>
</tbody>
</table>

• \(L = VGG16 \)
Single-scale testing a good tradeoff

<table>
<thead>
<tr>
<th></th>
<th>SPPnet</th>
<th>ZF</th>
<th>S</th>
<th>M</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>scales</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>test rate (s/im)</td>
<td>0.14</td>
<td>0.38</td>
<td>0.10</td>
<td>0.39</td>
<td>0.15</td>
</tr>
<tr>
<td>VOC07 mAP</td>
<td>58.0</td>
<td>59.2</td>
<td>57.1</td>
<td>58.4</td>
<td>59.2</td>
</tr>
</tbody>
</table>

- **L** = VGG16, **M** = VGG_CNN_M_1024, **S** = Caffe/AlexNet
Direct region proposal evaluation

- VGG_CNN_M_1024
- Training takes < 2 hours
- Fast training makes these experiments possible

Part 2: Faster R-CNN training

Two algorithms for training Faster R-CNN

- Alternating optimization
 - Presented in our NIPS 2015 paper
- Approximate joint training
 - Unpublished work, available in the py-faster-rcnn Python implementation https://github.com/rbgirshick/py-faster-rcnn
 - Discussion of exact joint training

What is Faster R-CNN?

• Presented in Kaiming’s section

• Review:
 Faster R-CNN = Fast R-CNN + Region Proposal Networks
 • Does not depend on an external region proposal algorithm
 • Does object detection in a single forward pass
Training goal: Share features

- Region Proposal Network (RPN) proposals
- CNN A feature map
- CNN B feature map
- Goal: share so CNN A == CNN B

CNN A + RPN -> CNN B + detector
Training method #1: Alternating optimization

Let M0 be an ImageNet pre-trained network

1. train_rpn(M0) → M1 # Train an RPN initialized from M0, get M1
2. generate_proposals(M1) → P1 # Generate training proposals P1 using RPN M1
3. train_fast_rcnn(M0, P1) → M2 # Train Fast R-CNN M2 on P1 initialized from M0
4. train_rpn_frozen_conv(M2) → M3 # Train RPN M3 from M2 without changing conv layers
5. generate_proposals(M3) → P2
6. train_fast_rcnn_frozen_conv(M3, P2) → M4 # Conv layers are shared with RPN M3
7. return add_rpn_layers(M4, M3.RPN) # Add M3’s RPN layers to Fast R-CNN M4
Training method #1: Alternating optimization

Motivation behind alternating optimization

- Not based on any fundamental principles
- Primarily driven by implementation issues and the NIPS deadline 😊
- However, it was unclear if joint training would “just work”
 - Fast R-CNN was always trained on a fixed set of proposals
 - In joint training, the proposal distribution is constantly changing
Training method #2: Approx. joint optimization

Write the network down as a single model and just train it

• Train with SGD as usual
• Even though the proposal distribution changes this just works
 • Implementation challenges eased by writing various modules in Python
One net, four losses

Region Proposal Network

Classification loss
Bounding-box regression loss

proposals

RoI pooling

feature map

CNN

image
Training method #2: Approx. joint optimization

Why is this approach approximate?

\[\frac{\partial L}{\partial \text{RoI}[i]} = 0 \]
for \(i = x_1, y_1, x_2, y_2 \)

In Fast R-CNN function input 2 (RoI) is a constant, everything is OK
Training method #2: Approx. joint optimization

Why is this approach approximate?

In Faster R-CNN function input 2 (RoI) depends on the input image.

\[
\frac{\partial L}{\partial \text{RoI}[i]} \neq 0 \text{ in general for } i = x_1, y_1, x_2, y_2
\]
Training method #2: Approx. joint optimization

Why is this approach approximate?

roi_pooling(conv_feat_map, RoI)

However, \(\frac{\partial L}{\partial \text{RoI}[i]} \) is actually undefined, roi_pooling() is not differentiable w.r.t. RoI

\[
\frac{\partial L}{\partial \text{RoI}[i]} \text{ does not even exist for } i = x_1, y_1, x_2, y_2
\]
Training method #2: Approx. joint optimization

What happens in practice?

• We ignore the undefined derivatives of loss w.r.t. RoI coordinates
 • Run SGD with this “surrogate” gradient
• This just works
• Why?
 • RPN network receives direct supervision
 • Error propagation from RoI pooling might help, but is not strictly needed
Faster R-CNN exact joint training

- Modify RoI pooling so that it’s a differentiable function of *both* the input conv feature map and input RoI coordinates

- One option (untested, theoretical)
 - Use a differentiable sampler instead of max pooling
 - If RoI pooling uses *bilinear interpolation* instead of max pooling, then we can compute a derivatives w.r.t. the RoI coordinates
 - See: Jaderberg *et al.* “Spatial Transformer Networks” NIPS 2015.
Experimental findings (py-faster-rcnn implementation)

• Approximate joint training gives similar mAP to alternating optimization

• VOC07 test mAP
 • Alt. opt.: 69.9%
 • Approx. joint: 70.0%

• Approximate joint training is faster and simpler
 • Alt. opt.: 26.2 hours
 • Approx. joint: 17.2 hours
Code pointers

• Fast R-CNN (Python): https://github.com/rbgirshick/fast-rcnn
• Faster R-CNN (matlab): https://github.com/ShaoqingRen/faster_rcnn
• Faster R-CNN (Python): https://github.com/rbgirshick/py-faster-rcnn
 • Now includes code for approximate joint training

Reproducible research – get the code!
Extra slides follow
Fast R-CNN unified network

B full images input: $B \times 3 \times H \times W$

(e.g., $B = 2$, $H = 600$, $W = 1000$)

Sampled class labels: 128 x 21

Sampled box regression targets: 128 x 84

Sampled RoIs: 128 x 5

Fast R-CNN unified network

Classification loss (log loss) + Bounding-box regression loss (“Smooth L1” / Huber)

Rols: 128 x 5