Fast Shortest Path Computation for Solving the Multicommodity Flow Problem

For solving the multicommodity flow problems, Lagrangian relaxation based algorithms are fast in practice. The time-consuming part of the algorithms is the shortest path computations in solving the Lagrangian dual problem. We show that an A* search based algorithm is faster than Dijkstra's algorithm for the shortest path computations when the number of demands is relatively smaller than the size of the network.

By: Hiroki Yanagisawa

Published in: RT0688 in 2007


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .