Analytic Second Variational Derivative of the Exchange-Correlation Functional

A general analytic expression for the second variational derivative of gradient-corrected exchange-correlation energy functionals is derived, and the terms for the widely used Becke/Perdew, Becke/Lee-Yang-Parr, and Perdew-Burke-Ernzerhof exchange-correlation functionals are given. These analytic derivatives can be used for all applications employing linear-response theory or time-dependent density-functional theory. Calculations are performed in a plane-wave scheme and shown to be numerically more stable, more accurate, and computationally less costly than the most widely used finite-difference scheme.

By: Daniel Egli and Salomon R. Billeter

Published in: RZ3504 in 2003


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .