Nonlinear Dynamic Boltzmann Machines for Time-series Prediction

The dynamic Boltzmann machine (DyBM) has been pro- posed as a stochastic generative model of multi-dimensional time series, with an exact, learning rule that maximizes the log-likelihood of a given time series. The DyBM, however, is defined only for binary valued data, without any nonlin- ear hidden units. Here, in our first contribution, we extend the DyBM to deal with real valued data. We present a for- mulation called Gaussian DyBM, that can be seen as an ex- tension of a vector autoregressive (VAR) model. This uses, in addition to standard (explanatory) variables, components that captures long term dependencies in the time series. In our second contribution, we extend the Gaussian DyBM model with a recurrent neural network (RNN) that controls the bias input to the DyBM units. We derive a stochastic gradient up- date rule such that, the output weights from the RNN can also be trained online along with other DyBM parameters. Fur- thermore, this acts as nonlinear hidden layer extending the capacity of DyBM and allows it to model nonlinear components in a given time-series. Numerical experiments with synthetic datasets show that the RNN-Gaussian DyBM improves predictive accuracy upon standard VAR by up to ~ 35%. On real multi-dimensional time-series prediction, consisting of high nonlinearity and non-stationarity, we demonstrate that this nonlinear DyBM model achieves significant improvement upon state of the art baseline methods like VAR and long short-term memory (LSTM) networks at a reduced computational cost.

By: Sakyasingha Dasgupta and Takayuki Osogami

Published in: RT0975 in 2016


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .