Suitability of Metal Gate Stacks for Low-Power and High-Performance Applications: Impact of Carrier Confinement

A simulation study is carried out to assess the competitiveness of metal gate stacks for low-power and high-performance technologies using realistic oxynitride and high-permittivity gate dielectric stacks having insulator leakages appropriate for each application. In the first part of this work, the metal gate work function is fixed at a value near midgap. For this value of work function, the performance (obtained from mixed-mode simulations of inverter delay chains) of metal gate stacks is found to exceed that of polysilicon gate stacks for low-power applications, but to be uncompetitive for high-performance applications. Both of these observations are explained by understanding the role of carrier confinement determined by the channel doping required for each application. In the second part of this work, the metal gate work function is allowed to vary in order to obtain the optimal work function ranges for each application. Metal gate stacks are shown to be especially suitable for low-power applications over a wide range of possible work functions, with optimal performance away from the band edges. For high-performance applications, work functions near the band edges yield the best performance, but significant gains compared to polysilicon-gated devices are found only when additional scaling is achieved through use of a high-permittivity gate insulator.

By: Arvind Kumar; Paul M. Solomon

Published in: RC23801 in 2005


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .