Bayesian Learning of Markov Network Structure

We propose a simple and efficient approach to building undirected probabilistic classification models (Markov networks) that extend naïve Bayes classifiers and outperform existing directed probabilistic classifiers (Bayesian networks) of similar complexity. Our Markov network model is represented as a set of consistent probability distributions on subsets of variables. Inference with such a model can be done efficiently in closed form for problems like class probability estimation. We also propose a highly efficient Bayesian structure learning algorithm for conditional prediction problems, based on integrating along a hill-climb in the structure space. Our prior based on the degrees of freedom effectively prevents overfitting.

By: Aleks Jakulin; Irina Rish

Published in: RC24413 in 2007


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .