Chinese Named Entity Recognition Based on the Robust Risk Minimization Classifier

This paper presents a Chinese named entity recognition system that employs the Robust Risk Minimization (RRM) Classification method and incorporates the advantages of character-based and word-based models. From experiments on a large-scale corpus, we show that significant performance enhancements can be obtained by integrating various linguistic information (such as Chinese word segmentation, semantic types, part of speech, and named entity triggers) into a basic Chinese character based model. A novel feature weighting mechanism is also employed to obtain more useful cues from most important linguistic features. Moreover, to overcome the limitation of computational resources in building a high-quality named entity recognition system from a large-scale corpus, informative samples are selected by an active learning approach.

By: Honglei Guo, Jianmin Jiang, Gang Hu, Tong Zhang

Published in: RC22996 in 2003


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .