On the Computational Complexity of MCMC-Based Estimators in Large Samples

This paper studies the computational complexity of Bayesian and quasi-Bayesian estimation in large samples carried out using a basic Metropolis random walk. The framework covers cases where the underlying likelihood or extremum criterion function is possibly non-concave, discontinuous, and of increasing dimension. Using a central limit framework to provide structural restrictions for the problem, it is shown that the algorithm is computationally efficient. Specifically, it is shown that the running time of the algorithm in large samples is bounded in probability by a polynomial in the parameter dimension d, and in particular is of stochastic order d2 in the leading cases after the burn-in period. The reason is that, in large samples, a central limit theorem implies that the posterior or quasi-posterior approaches a normal density, which restricts the deviations from continuity and concavity in a specific manner, so that the computational complexity is polynomial. An application to exponential and curved exponential families of increasing dimension is given.

By: Alexandre Belloni; Victor Chernozhukov

Published in: RC24206 in 2007


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to reports@us.ibm.com .