Communication Architectures for Massive Multi-Player Games

Massive multi-player games are characterized by a large number of participating players. It is therefore essential that an appropriate communication architecture is deployed in order to support an ever growing number of players. Several such architectures have been proposed, including client-server and peer-to-peer architectures. In this paper, we propose a systematic method to assess the scalability of different architectures in order to identify the most appropriate one for specific game types. The model proposed is very general in that it covers centralized, distributed, and hybrid architectures and it is applied to the client-server, peer-to-peer and the newly introduced federated peer-to-peer architecture. Quantitative expressions that capture the effect of various game types are derived, and the trade-offs among the architectures are identified.

By: Daniel Bauer, Ilias Iliadis, Sean Rooney, and Paolo Scotton

Published in: RZ3500 in 2003


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .