Real-Time Performance Modeling for Adaptive Software Systems

Modern, adaptive software systems must often adjust or reconfigure their architecture in order to respond to continuous changes in their execution environment. Efficient autonomic control in such systems is highly dependent on the accuracy of their representative performance model. In this paper, we are concerned with real-time estimation of a performance model for adaptive software systems that process multiple classes of transactional workload. Based on an open queueing network model and an Extended Kalman Filter (EKF), experiments in this work show that: 1) the model parameter estimates converge to the actual value very slowly when the variation in incoming workload is very low, 2) the estimates fail to converge quickly to the new value when there is a step-change caused by adaptive reconfiguration of the actual software parameters. We therefore propose a modified EKF design in which the measurement model is augmented with a set of constraints based on past measurement values. Experiments demonstrate the effectiveness of our approach that leads to significant improvement in convergence in the two cases.

By: Dinesh Kumar; Asser Tantawi; Li Zhang

Published in: RC24887 in 2009


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .