Extended Baum Transformations for General Functions, II

The discrimination technique for estimating the parameters of Gaussian mixtures that is based on the Extended Baum transformations (EB) has had significant impact on the speech recognition community. The proof that definitively shows that these transformations increase the value of an objective function with iteration (i.e., so-called "growth transformations") was presented by the author two years ago for a diagonal Gaussian mixture densities. In this paper this proof is extended to a multidimensional multivariant Gaussian mixtures. The proof presented in the current paper is based on the linearization process and the explicit growth estimate for linear forms of Gaussian mixtures.

By: Dimitri Kanevsky

Published in: RC23739 in 2005


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to reports@us.ibm.com .