Three Algorithms for Cholesky Factorization on Distributed Memory using Packed Storage

We present three algorithms for Cholesky factorization using minimum block storage for a distributed memory (DM) environment. One of the distributed square block packed (SBP) format algorithms performs similar to ScaLAPACK PDPOTRF, and our algorithm with iteration overlapping typically outperforms it by 15-50% for small and medium sized matrices. By storing the blocks contiguously, we get better performing BLAS operations. Our DM algorithms are not sensitive to cache conflicts and thus give smooth and predictable performance. We also investigate the intricacies of using rectangular full packed (RFP) format with ScaLAPACK routines and point out some advantages and drawbacks.

By: Fred G. Gustavson; Lars Karlsson; Bo Kågström

Published in: RC24137 in 2006


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .