Empirical Methods for Two-Echelon Inventory Management with Service Level Constraints Based on Simulation-Regression

We present a simulation-regression based method for obtaining inventory policies for a two-echelon distribution system with service level constraints. Our motivation comes from a wholesale distribution system in the consumer products industry with thousands of products that have different cost, demand, and lead time characteristics. We need to obtain good inventory policies quickly so that supply chain managers can run and analyze multiple scenarios effectively in reasonable amount of time. While simulation-based optimization approaches can be used, the time required to solve the inventory problem for a large number of products is prohibitive. On the other hand, available quick approximations are not guaranteed to provide satisfactory solutions. Our approach involves sampling the universe of products with different problem parameters, obtaining their optimal inventory policies via simulation-based optimization and then using regression methods to characterize the inventory policy for similar products. We show that our method obtains near-optimal policies and is quite robust.

By: Lan Li; Karthik Sourirajan; Kaan Katircioglu

Published in: RC25016 in 2010


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to reports@us.ibm.com .